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SOME ASPECTS OF CRITICAL POINT THEORY

Paul H. Rabinowitz*

The main goal of these lectures is to describe some of the

research done on minimax methods in critical point theory during the

past several years. A variety of abstract critical point theorems

will be stated and proved and applications of these results will be

made to differential equations. Due to time limitations we will

confine our applications to existence theorems for semilinear

elliptic boundary value problem.

To briefly describe the abstract situation that is treated,

let 8 be a real Banach space and I e CI (2E). The Frechet

derivative of I at u will be denoted by I'(u). It is a linear

functional on Z, i.e. I'(u) E*, the dual space of X. A

critical eoint of I is a point at which 1'(u) - 0, i.e.

I'(u)# - 0 (0.1)

for all # e Z. We then call 1(u) a critical value of I. In

applications to differential equations this situation is of interest

since satisfying (0.1) corresponds to obtaining a weak solution of

the differential equation. Thus when applicable, critical point

theory serves as an existence mechanism for obtaining weak solutions

of differential equations as critical points of corresponding

functionals.

*Department of Mathematics, University of Wisconsin-Madison,

Madison, WI 53705

This research was sponsored in part by the National Science
Foundation under Grant No. MCS-8110556 and by the United States Army
under Contract No. DAAG29-80-C-0041. Reproduction in whole or in
part is permitted for any purpose of the United States Government.



The simplest kinds of critical points are local maxima and

minima of I. However we are primarily interested in indefinite

functionals, i.e. functionals which may not be bounded from above or

from below even modulo subspaces or submanifolds of finite dimension

or codimension, and such functionals may not possess any local maxima

or minima. Thus finding critical points becomes a more subtle

question. The various critical points we obtain in this paper have

the common feature that they are characterized by a minimax

procedure. Such minimax methods not only give us a critical point

.of I but also estimates for the corresponding critical value that

can be useful in some applications.

In 11, several technicalities will be discussed including the

so-called Deformation Theorem which plays a role in obtaining

critical points. The hypotheses that one needs in a PDE setting to

show a functional lies in CI (E,R) and satisfies appropriate

compactness conditions will be described. The basic ideas of minimax

theory will also be introduced. The Mountain Pass Theorem and some

PDE applications are the main topic in 12. A brief discussion of

(Brouwer and Leray-Schauder) degree theory is given in 13 and a

Saddle Point Theorem is proved. A generalized version of the

Mountain Pass Theorem and some PDE applications are given in 14. The

role of symmetries in obtaining multiple critical points of a

functional is discussed in 15 and appropriate tools for studying this

question, in particular the notion of genus and its properties are

introduced. This machinery is used to study constrained variational

problems, a theorem of Clark, and applications. In 16 a symmetric

version of the Mountain Pass Theorem is given together with an

application. Lastly 17 deals with perturbations from symmetry in a
PDE setting.

Some other recent sources for material on critical point theory

and applications are Nirenberg [1], Berger (2], and Rabinowitz (3],

(4). Some older references are Ljusternik and Schnirelmann E5],

Krasnoselski (6], Vainberg (7], Palais (8], Schwartz (9] and Browder

110].
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We thank again the members of the Organizing Contxittee and the

participants for their gracious hospitality.

§1. THE DEFORMATION THEOREM AND OTHER TECHNICALITIES

This section treats some technical results that will be

important for the sequel. In particular we will describe the

Deformation Theorem and will discuss hypotheses under which the

functionals we study in the PDE setting are continuously

differentiable and satisfy appropriate compactness conditions.

Unless otherwise indicated in this paper, E denotes a real

Banach space. Weak convergence in E will be denoted by -h and

strong convergence by -->. In order to obtain critical points of

I e C I(E,R), some "compactness* structure is generally required

for I. A useful hypothesis in this direction is the Palais-Smale

condition (PS). We say I satisfies (PS) if any sequence (um)

such that 1I(u,,)l is uniformly bounded and I'(u m ) + 0 possesses a

convergent subsequence. Several examples of (PS) will be exhibited

in the course of our future PDK applications so we will not pause now

to give an example.

For I C I(E,R) and c,s e R, let

K c {u e 11(u) - c and I'(u) - 0) and A {u e E11(u) s)c 5

An important technical result that will be used repeatedly is the

following:

Theorem 1.1 (Deformation Theorem): Let I e CI (,R) and satisfy

(PS). Then for any c e R, i > 0, and neighborhood 0 of Ke,

there exists an e e (O,i) and n e c(10,11 x E,E) such that for

all u e E and t e (0,11:
10 n(Ou) - u

20 n(t,u) =u if 1(u) f (c - ;,c + c
30 n(t, o) is a homeomorphism of E onto 9

4E In(t,u) - ul 4 1

50 n(1,A c+\O) C Ac_€

60 If Kc - #, n(1,Ac+4 ) C AC_€

70 If I(u) is even in u, n(t,*) is odd in u
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Proofs The proof of Theorem 1.1 can be found in (11I or (3). See

also [8] or (10]. We will briefly mention some of the ideas behind
n 2the proof. Suppose Z Rn  and I C C . Then the ordinary

differential equation

At -- (), *(0,u) - u (1.2)dt

possesses a unique solution defined on some maximal t interval

(t-(u),t+ (u)) for each u e z. Thus * satisfies 10, 30, 70 above

and where defined we have

dtdTI ((t,u) ) _ 1,'(#) .d I,()1

Consequently by (1.3), I strictly decreases along orbits of (1.2)

unless u is a critical point of I and this makes 5*-60 seem

plausible. Unfortunately t (u) may not exceed 1 nor need 2', 40

be satisfied. However by replacing the right hand side of (1.2) by

-x 9)I' () where X is an appropriately scaled cut off function,

it is not difficult to show the resulting flow satisfies 10-70. The

general case is technically more difficult since I is merely C1

and I' e E*, not Z, while A e z so (1.2) makes no sense. See
dt

e.g. the references mentioned above for the details.

Remark 1.4: i) Related results can be obtained if 3 is not a

linear space but a manifold. See e.g. (8] or (101. (ii) The

requirement that I be C1 has been weakened somewhat by Chang

[121. (11) One does not need (PS) for the proof of Theorem 1.1,

but only a local version thereof such as: Whenever Iu ) + c and3

1( ( m ) + 0. (um ) is precompact. (iv) Even weaker versions of

(PS) suffice in some situations. See e.g. [13-16). (v) One is

sometimes interested in situations in which * corresponds to a

positive rather than negative gradient flow. Calling the resulting
A

map n we still get Theorem 1.1 with some minor modifications. E.g.

60 becomes

n(1,{u e zlz(u) ; c - e)) c (u e zl(u) ) c + c)

-4-



Before beginning with the PDE technicalities, we will discuss

the basic ideas behind the use of minimax methods in critical point

theory. suppose I e C (z,R) satisfies (PS) and there exists a

family S of subsets of E which is invariant under a gradient or

gradient-like flow (as in (1.2)). Define

c = tnf sup I(u) (1.5)
AeS usa

Suppose further that - c < a < -. Then c is a critical value of

I. For if not, by Theorem.1.1 with e.g. £ 1 ,. there is an

e s (0,1) and n e c([0#i x zz) such that

nI(,a c+) C Ac t . (1.6)

Choose A a S such that

sup 1 c + C. (1.7)
A

By hypothesis, (1,.) z S + S and therefore nt(1,A) e S. Rence by

(1.6) and (1.7),

sup Z(I(1,u)) 4 C - t
ue

contrary to (1.5).

We will see many applications of this argument in the sequel.

in practice (assuming we have already verified (PS)), the main

difficulties are in finding S and avoiding critical values that may

already be known. As an almost trivial example of this argument, we

have

Proposition 1.8s Suppose x e CI (,R), satisfies (PS), and is

bounded from below. Then

C - inf I

is a critical value of I.

Proofs Take S - {{x)jx e z). Then I1(1,o) trivially maps S + S

and (1.5) reduces to the nt of I on B.
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We will conclude this section with some results that are

necessary for our later PDE applications. We prefer to work with the

simplest such situation and therefore will restrict our applications

to problems of the form:

-Au p(x,u), x e a (1.9)

u "O, x e 0O

where here and in all of our PDE applications 0 C Rn is a bounded

domain with a smooth boundary. We assume p satisfies

(pl) p e c(5 x R,R),

and

(p2 ) there are constants ala 2 ) 0 such that

Ip(x, ) 4 a iMi8 +a2
-1

where 0 4 s < (n + 2)(n - 2) "1 if n ) 2

Hypothesis (p2 ) is dictated by the Sobolev Embedding Theorem and can

be weakened if n - 2. Our results also apply when n = I in which

case (p2 ) is not needed.

Let P denote the primative of p, i.e.

P(x, ) f P(x,t)dt

0

and let z 1 0 , the usual Sobolev space obtained as the

closure of C0(0) under

lul 2 lul 2  f Vu,2dx

(The usual norm in E is

(f (IVul 2 + u2)dx) 1/ 2

which by the Poincarg inequality is equivalent to the norm we use).

Even if not stated explicitly there, in each of our future PDE

-6-



applications, I " W1, 2 (0). Define for u e Z,

J(u) f f P(x,u(x))dx
0

Proposition 1.10: Let p satisfy (p1 )-(p2 ). Then i e c (9,R) and

for u,# e s,

JIM - p(x,u(x))#(x)dx

Moreover J is weakly continuous, i.e. um - u in Z implies

J(ua) + J(u), and J'(u) maps weakly convergent to strongly

convergent sequences, i.e. um -A u in E implies

f p(x,u a)dx + f p(x,u)#dx
a a

uniformly for # in the unit ball in B.

Proof: For the proof of these facts, see [3] or [13].

With these preliminaries, the relationship between (1.9) and

critical point theory becomes clear. Set

1 _u) f I I VuI2 dx _ j(u) _ _ u 1 2 - J(u) (1.11)

IN 2 (11

The form of I and Proposition 1.10 imply I e c (E,R) and

x.fu)# f (Vu.V+ - p(x,u)#)dx (1.12)

for all # e E. Thus a critical point of I is a weak solution of

(1.9).

Proposition 1.13: If p satisfies (p2 ) and

(p;) p is locally Lipschitz continuous in h R,

any weak solution of (1.9) is a classical solution.

Proof. See e.g. (17].

In order to apply the abstract theorems we will be studying next

to (1.11), we must verify that I satisfies (PS). This will be done

in later sections under various hypotheses on p. The verification

process can be simplified with the aid of the followings
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Proposition 1.14: Suppose p satisfies (pl), (p2 ) and I is

defined by (1.11). If (um) is a sequence in Z such that (u3)

is bounded and 1'(u a 0, then (um ) possesses a convergent

subsequence.

Remark 1.15: By Proposition 1.14, to verify (PS) in our PDE setting

all we need show is whenever I(um) is bounded and I(u ) + 0,

then (um ) is bounded.

Proof of Proposition 1.14: Since (um ) is bounded, it possesses a

weakly convergent subsequence which we also denote by (u.). Say

u -% u. Let I denote the canonical injection of 1* to 3. The3

form of I' implies

t I'(u) = u - J Y'(u) * (1.16)

Thus

I I'(u ) " u - I J'(u n ) + 0 (1.17)

and by Proposition 1.10, A J'(u ) converges to I. J'(u). Hence

um has a convergent subsequence.

12. THE MOUNTAIN PASS THEOREM

In this section we will study the Mountain Pass Theorem and some

variants of this result. Below B RX) denotes the open ball of

radiut R in 2 centered at x. If x - 0, we simply write B

Theorem 2.1 (Mountain Pass Theorem (181): Let I e c (E,R) and

satisfy (PS). Suppose I also satisfies

( 1 , ) 1(0) - 0 and there are constants p,a > 0 such that
1 3B P ,

(12) There is an e e i\BP such that I(e) C 0,

Then I possesses a critical value c ) a which can be

characterized as

c - inf max I(g(t)) (2.2)
ger te(o,1i

where

r - (g e c(o,1],E)ig(O) - o,g(1) - e)

-8-



Prooft Since 3B separates 0 and e and each curve g([0,1])p
joins 0 and a, g(EO,1]) fl DD * and therefore

max I(g(t)) ; a
te(0, 1

via (I,). Hence c ) a. To see that c is a critical value,

suppose not. Then we can invoke Theorem 1.1 with 1 v 2 and
2

0-,. With e and vi as given by Theorem 1.1, choose g e r
such that

max I(g(t)) 4 C + C (2.3)
te [0,13)

and consider n(1,g(t)) - h(t). If h e r, (2.3) and 69 of Theorem
1.1 imply that

max I(h(t)) € -a (2.4)
telo,11

contrary to the definition of c in (2.2). Thus c must be a

critical value of I. To verify that h e r, observe that
h e c([0,1,z). Moreover our choice of 1 and 2- of Theorem 1.1

imply that h(0) - n(1,g(0)) - n(1,0) - 0 and h(1) - (1,g(1)) -

n(l,e) - e. Thus h e r and the proof is complete.
Remark 2.5: The Mountain Pass Theorem is due to Ambrosetti and

Rabinowitz [183. It is so named because (11)-(12) imply 0 and e

are separated by a "mountain range" and therefore there must be a

mountain pass through this range. Thus our characterization of c

seems natural. However there are other ways to characterize a

critical value of I which are also geometrically natural and which

may in general give a different critical value than c above.

Indeed there is no definitive characterization of a critical value

of I for the class of problems we study. Choosing sets with

respect to which to minimax I is a very ad hoc process.

The next result illustrates the above remarks by producing

another critical value for I which may not equal c.

Theorem 2.6 [18]: Under the hypotheses of Theorem 2.1, I possesses

a critical value b such that a 4 b 4 c where b can be

characterized as

-9-



b - sup inf I(u) (2.7)
Bew ueaB

where

w - (B C EIo e B open and e

Proof: By (II }

inf I ) a
aB

so b > a. If D e W and g e r,

B n g(O,1]) *.

Thus if w lies in this intersection,

inf I I(w) 4 max I
B g([O,1)

Since this is true for any B e W and g e r, b < c. Lastly if

B is not a critical value of I, letting i - ., Theorem 1.1 and

Remark 1.4 (v) give us C e (O,i) and n e C( 10,13 x E,E) such that

111,A ) C A b+ 2.8)

where A - {u e EJI(u) > s). Choose B e w such that5

inf I >b- . (2.9)
3D

and consider (1,B). This is an open set since ;(1,.) is a

homeomorphism. Moreover (1,0) - 0 and ;(1,e) - e via our choice

of 1 so 0 e n(1,B) and e f n(1,B). Thus (1,B) a w and

inf I C b • (2.10)

a;(1,B)

But A(1,B) - n(1,aB) since ;(1,.) is a homeomorphism and

therefore by (2.8) and (2.9),

inf I > b + £ (2.11)3T (1,a)

contrary to (2.10).
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Exercise 2.12:, Give an example where b * c (e.g. in R)

Using the dual approach to the Mountain Pass Theorem as in this

last result, we can prove a critical point theorem for a "degenerate"

situation (see also [193).

Theorem 2.13: Let I a C I(E,R) and satisfy (PS). Suppose I

satisfies

(I I(0) - 0 and there is a p > 0 such that I a )0
p

and (12). Then I possesses a critical value b ) 0, as

characterized by (2.7). Moreover if b - 0, there exists a critical

value of I on 3B 3p
Proof: If b > 0, the proof of Theorem 2.6 carries over to this

case without any change. Thus suppose b - 0. Without loss of

generality we can assume

min(p,leI - p) > 1 . (2.14)

If I has a critical value on aBp, we are through. Thus suppose

I' * 0 on B P. Therefore since K0 is compact by (PS), there is

a neighborhood 0 of K0 such that 0 rl3 B *. By Theorem 1.1

with C - 1, there is an Ce (0,1) and n e C([0,1] x E,E] such

that

1(1,A C\0) C AC

AA A

In particular (,3B} - an(1,B ) C A and
P p C

inf I > C

Thus we have a contradiction to b - 0 provided that n(1,B ) e w.
It suffices to verify that 0 e n(1,BP ) and e $ n(l,Bp). since

Ap

;(I,-) is a homeomorphism of E onto E, there exists an x C z

such that ;(1,x) - 0. Moreover by 40 of Theorem 1.1,

In(l,x) - x1 - Ixi < 1 < p via (2.14) so x e B P. Similarly thereAm

is a y e E such that o(ly) - e. If ye B,

ly - n(1,y)l - ly -el 4 1 contrary to (2.14). Thus I has a

critical point on 3B and the proof is complete.p

Remark 2.15: The conclusions of Theorem 2.13 hold if in () we

replace aB by 3B for some B e W. Indeed the same proof works.p
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Corollary 2.16 (3]: Let I e C I(E,R) and satisfy (PS). If I

possesses a pair of local minima, then I possesses a third critical

point.

Proof: Suppose the local minima occur at xl,x 2  respectively,

xi ) = i 1 1,2, and aI ) a2. Without loss of generality we

can assume a- 0 and x, - 0. Since 0 is a local minimum for

I, (1;) is satisfied-and the result follows from Theorem 2.13.

Remark 2.17: If in the setting of Corollary 2.16, b as defined by

(2.7) equals 0, then K0 contains a component which meets 3Br
for each small r. For since 0 is a local minimum for I, there

is an r > 0 such that I ) 0 in Br. Thus by Remark 2.15 for any

B e w with B C B, K0 n 3B * #. The result then follows from a

standard argument in point set topology (see e.g. 1201).

Now we turn to some applications of the Mountain Pass Theorem to

PDE's. Consider (1.9).

Theorem 2.18 (18): If p satisfies (pl)-(p2),

(p3 ) p(x,&) - o(II) as & +0,

(p4 ) There is a v > 2 and r > 0 such that

0 < JAP(x,g) ( Ep(x,g) for j(I ) r

then (1.9) possesses a nontrivial weak solution.

Remark 2.19: Note that (p3) implies that u -- 0 is a solution of

(1.9) which we will call the trivial solution of (1.9). Hypothesis

(p4 ) implies there are constants a3,a4 > 0 such that

P(x,E) > a 3 j lI - a4  (2.20)

for all & e R. Thus P grows at a "superquadratic" rate and by

(p4), p at a "superlinear" rate as M + -. Consequently by

(1.11) and (2.20),

t2 1

I(t,u) 4 2-- lu - f (a3Iulp - a 4 )dx + -g (2.21)

as t + - for any u e E\{0) which shows that I is not bounded

from below. Moreover I is not bounded from above. Indeed choose

any orthornormal basis (e ) for E - W12 (0). Then for any R ) 0,

-12-



Re - 0 and J(Re M ) -* 0 via Proposition 1.10. Hence

I(Re 12

Is 4

for all large I - m(R). Since R in arbitrary, I is not bounded

from above in a.
Proof of Theorem 2.18: We will show that I as defined by (1.11)

satisfies the hypotheses of Theorem 1.1. Clearly 1(0) - 0 and

hypotheses (pl)-(p2 ) and Proposition 1.10 show I e C1 (E.R).

Hypothesis (p4 ) implies (12) via Remark 2.19. The form of I shows

(I1 ) holds if J(u) - o(lul2 ) as lul + 0. By (p3 ), for any

9 > 0, there is a 6 > 0 such that IS 6 implies

ip(x,C)i < CIEt and
1 2

IP(x,)I C 4- 2 I • (2.22)

By (p2I, there is an Ae > 0 such that

IP(xC)l 4 A 9 s  (2.221)

for I • 8. Adding these two equations yields

IP(x,')I C 1 ICI 2 + A 191l8+1 (2.23)

for all e R. The Poincar6 and Sobolev inequalities then imply

IJ(u) 1 2 lul- 2 + A-uIl 4L+ ( 5( + A lu I s l )1u1 2  (2.24)
2 L 2L 681 5

for all u e Z. Since e is arbitrary, (u) - o(ul 2 ) as

lul + 0 and ( 1
) is satisfied. Lastly suppose (u m ) is a sequence

in I such that II(um )t 1C N and ZV(u m ) * 0. Then for all large

a and u- u

M + Blul • 1(u) - 01'(u)u - (2.25)

- (- O)'u 2 + f (C(xfu)u - P(xu))dx
2 a

where 0e (0,,-). Choosing B- , (p4 ) and (2.25) show

-13-



1 m 2

! I I ~ I ) -B)u

where M1  is independent of m. It follows that (um ) is bounded

in E. Therefore by Proposition 1.14, (PS) is satisfied. Hence

Theorem 2.18 follows from the Mountain Pass Theorem.

Corollary 2.27 [18): Suppose p satisfies (p;), (P2), (P3) and

(p4) There exists U > 2 and r > 0 such that

0 < PP(x,V) 4 Ep(x,) for C ) r .

Then (1.9) possesses a classical solution u > 0 in Q.

Proof: Define p(x,) - p(x,C) if C > 0 and p(x,C) - 0 if

E 4 0. If P denotes the primative of p, tji(x,) C Fv(x,V) for

all j • r. The arguments of Theorem 2.18 show

i(u) - Iu,2 - i P(x,u)dx

satisfies the hypotheses of the Mountain Pass Theorem. Indeed only

the proof that i satisfies (12) need be modified. The verification

of (12) follows from (2.20) which now holds for ) 0. Taking e

to be a positive function in A then easily yields (12). Therefore

by Theorem 2.1, the equation

-Au - p(x,u), x e Q (2.28)

u "0 , x e 3

has a nontrivial weak solution u and by Proposition 1.13 u is a

classical solution of (2.28). Consider N - (x e olu(x) < 0o). Then

by the definition of p,

- o, x e V (2.29)

u "0, x eD.

The Maximum Principle then implies V - #. Therefore u > 0 in 0

and hence satisfies (1.9). Since we can write (2.28) as

-Au - (;(x.u) - Cp(x.u))
u u U

where p are respectively the positive and negative parts of

-14-



and p(xu) T u 1  are continuous via (p3 ), the Strong Maximum

Principle implies u > 0 in a and (v < 0 on 30 where %Kx)
3V

is the outward pointing normal to 30.

Corollary 2.30: If p satisfies (p;), (p2 )-(p4 ), (1.9) possesses a

classical solution u > 0 and a classical solution w < 0 in n

Proof: Since (p4 ) implies (p4), the existence of u follows from

Corollary 2.27. A truncation argument similar to that of Corollary

2.27 also yields the existence of the negative solution w.

Remrk 2.31: More careful arguments avoiding the classical Maximum

Principle give weak solutions u and v as in Corollary 2.30

with (p;) replaced by (p,). An interesting open question is whether

one can get the positive and negative solutions of (1.9) in a more

direct fashion without using the truncation arguments of the above

Corollaries.

Remark 2.32: An identity of Pohozaev E21] for solutions of (1.9)

when p is independent of x says

2n f P(u)dx + (2 - n) f p(u)udx - f x.V(x) IV12dS . (2.33)

Thus if 0 is starshaped with respect to the origin, x-v(x) V 0

and (2.33) implies

f P(u)dx ; n - 2 f p(x,u)udx (2.34)
2n

Thus if P(u) - (s + 1) 1 Iuls ', (2.34) shows s 4 (n + 2)(n - 2)1

and a growth condition is necessary to get nontrivial solutions of

(1.9). An interesting open question is to better understand the

relationship between the geometry of the domain and the growth rate

of p(x,g). E.g. for domains with holes, there may exist nontrivial

solutions even if s > (n + 2)(n - 2)1. This is known in particular

for p a pure power in an annular domain in Rn.

For our next PDE application, consider the nonlinear eigenvalue

problem
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-Au - )p(x,u), x e a (2.35)

u O , xe 30

where e e R.

Theorem 2.36 (18]: Suppose p satisfies (p;), (p3 ), and

(p5 ) There is an r > 0 such that p(t) > 0 in (0,r)

and p(r) - 0.

Then there exists a > > 0 such that for all X > ), (2.35) has at

least two classical solutions which are positive in 0.

Proof: Define p(C) - p() for C e [0,r] and p(C) - 0

otherwise. Then p satisfies (p), (p3 ), and (p5 ). If u is a

solution of

-Au )w(u), x e a (2.37)

U 0 , xe o

the argument of Corollary 2.27 shows V (as defined there) -

and u > 0 in 0. A similar argument shows V+ {u e 2u > r)

Hence 0 < u 4 r in 0 and u satisfies (2.35). Thus to prove the

theorem, by these observations and Proposition 1.13 it suffices to

find nontrivial critical points of

1,2~~(u) E~ 2u 1Pu (2.38)

on Z - W01
2 () where P is the primative of p. Since

satisfies (p2 ) with s - 0, IA e C (Z,R) and IA satisfies (YI )

via (p 2 ), (p3 ) as in Theorem 2.8. Suppose (um ) is a sequence such

that II(um) C M. Then by (p2 ) with 9 - 0,

2 luIld - a 5 4 Cum )  . (2.39)

Hence by the H8lder and Poincarg inequalities (u.) is bounded and

(PS) follows from Proposition 1.14.

Inequality (2.39) also shows IX is bounded from below. Thus

b - inf I X
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is a critical value of IX by Proposition 1.8. It is possible that

b 0 and corresponds to the trivial solution u S 0 of (2.35)

(Indeed bA = 0 for small X). However let # e z\{0) such that

# ) 0 and #(x) e [0,r) for x e Q. Then for X sufficiently

large, I.(#) < 0 and therefore bA < 0. Set

- infP{ e RibA < 0). Then for all X > A, I has a critical

point uX such that IX(u) - bA < 0 and uA is a positive

solution of (2.35). Moreover since II(u) < 0, 1I satisfies

(12). Hence by the Mountain Pass Theorem, II has a second critical

point u+ such that I (u) ) > 0 and u is also a positive

solution of (2.35). Thus we have two distinct positive solutions of

(2.35) for A ) 1 and the proof is complete.

13. THE SADDLE POINT TEORM

Our goal in this section is to prove:

Theorem 3.1 (Saddle Point Theorem)-122 -: Let Z - V X where V

is finite dimensional. Suppose I e C1 (3,R) and satisfies (PS). If

there are constants a and B and a bounded neighborhood D of

0 in V such that

(13) I1D 1 a

and
(1 4 ) 1J 1Z B > a

then I possesses a critical value c ) B. Moreover c can be

characterized an

c - inf max I(h(u) (3.2)

her ueD

where

r - (h a c(PE)ih(u) - u for u e 3p)

Remark 3.3: Note that unlike the applications of the Mountain Pass

Theorem in 12, there is no known critical point to begin with in

Theorem 3.1. If 1(u) + - - as u + - in V and 1(u) + - as

u + a in X, then I satisfies (13)-(14). This will be the case

if I is e.g. convex in X, concave in V, and appropriately

coercive*
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One of the tools that goes into the proof of Theorem 3.1 and

some later results is the theory of topological degree of Brouwer in

the finite dimensional case and of Leray and Schauder in the infinite

dimensional setting. Therefore we will make a brief digression to

discuss the results we will need.

Let 0 C R1n be bounded and open, * e c (OR), and

b e Rn\4(a0). Consider the equation

*(x) - b . (3.4)

We are interested in whether there are any solutions of this equation

and if so how many. Suppose #'(x) is nonsingular whenever

*(x) - b. Then by the Inverse Function Theorem, solutions of (3.4)

are isolated and therefore there can only be finitely many of them

since by hypotheses b j #(30). For this -nice" case we define the

(Brouwer) degree of * with respect to 0 and b, d(#,O,b), to be

d(#,O,b) SE signl#' (x)l (3.5)

xe*" (b)

where If'(x)j denotes the determinant of #' at x. Then

d(,,O,b) possesses the following properties

10 d(id,O,b) I 1 if b e 0; and - 0 otherwise

20 d(*,O,b) * 0 implies there exists x e 0 such that

*(x) - b

30 d(*,O,b) - 0 if b * *(G)

40 (Continuity of d in #): d(*,0,b) - d(#,O,b) for all

* near #

50 (Additivity) If 0 - 01 U 02 where 01 n 0 2 and

b t #(0O) U #(302), d(,,O,b) - d(#,Ol,b) + d(#,O2 ,b)

In 1*, id denotes the identity map. The proofs of the above

statements are immediate from the definition with the exception of 40

(which refers to "nice" CI mappings * near #) which follows with

the aid of the Inverse Function Theorem - see [9].

This notion of degree extends from the class of nice C *'5

to C(0,Rn). See 19] for the proof of:
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Theorem 3.7: There is an integer valued map d - d(#,0,b) defined

for all bounded open sets 0 C Rn , # e C(0,Rn), and b e Rn\#,00)

and which satisfies 10-5* of (3.6). Moreover d is given by (3.5)

for "nice" +.

Remark 3.8: In Theorem 3.7, 4 of (3.6) refers to all maps # near

in C(ORe).

An important consequence of 4* is the homotopy invariance

property of d.

Proposition 3.9: If H e c(o,1] x ,Rn0) and b f H(10,1] x 30),

then d(H(t,.),0,b) is independent of t.

Proof: By 40 of (3.6). d(H(t,*),O,b) is continuous in t and is

integer valued hence the result.

Proposition 3.9 implies that d(#,0,b) depends only on the

values of * on D0:

Corollary 3.10: If *,* e C(0,Rn), # - 4 on 30, and

b # Rn\#( 3 0 ), then d(#,0,b) - d(4p,0,b).

Proof: Set H(t,x) - t#(x) + (1 - t)*(x) and invoke Proposition

3.9.

The finite dimensional degree theory that has just been

described has an extension that is valid in an infinite dimensional

setting. Let E be a real Banach space and o e C(AE) where

0 C E is bounded and open and 4(u) - u - T(u) where T is

compact. The resulting degree theory is due toLeray and Schauder

and can be obtained from Theorem 3.7 by a limit process. See (93 or

(23] for details. For later reference we state:

Theorem 3.11: Let E be a real Banach space. There exists an

integer valued map d d(f,0,b) defined for all bounded open

sets 0 C E, 0(u) - u - T(u) e C(0,E) where T is compact, and

b e E\0(0) and which satisfies 10-50 of (3.6).

Remark 3.12: It follows from their proofs that Leray-Schauder degree

also satisfies the conclusions of Proposition 3.9 and Corollary 3.10.

Now we turn to the

Proof of Theorem 3.1: Let P denote the projector of Z onto V

obtained from the given splitting of S. If h e r, then

Ph e C(V,V) and we can identify V with R for some n.
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Moreover for u e aD, Ph(u) - Pu - u * 0. Thus d(Ph,V,0) is

defined and by Corollary 3.10 and 1* of Theorem 3.7,

d(Ph,P,0) - d(id,P,0) 1 1

Thus there exists x e D such that Ph(x) - 0. Since

h(x) - (id - P)h(x) e X, by (14)

max I(h(u)) ) I(h(x)) > • (3.13)
V

But (3.13) holds for each h e r so c > o. If c is not a

critical value of I, set i -= (B - a) and invoke the Deformation

Theorem to obtain e and in as usual. Choose h e r so that

max 1(h(u)) 4 c + c (3.14)

V

and consider n(1,h). The choice of 1 implies n(1,h(u)) - u if

u e 8D and therefore n(1,h) e r. But then

max I(n(1,h(u))) < C -c (3.15)

contrary to (3.2).

For some applications of Theorem 3.1, see (22].

14. A GENERALIZED MOUNTAIN PASS THEOREM

There are many variations of the Mountain Pass Theorem, some of

which essentially contain both Theorems 2.1 and 3.1. See e.g. [1],

(13], (14]. In this section a relatively simple extension of Theorem

2.1 which requires the degree theory machinery of 13 will be proved

and a PDE application will be given.

The main abstract result in this section is

Theorem 4.1 (24]: Let E - V O X where V is finite dimensional

and let I e CI(E,R) and satisfy (PS). Suppose further I

satisfies

(I5 ) There are constants p,a > 0 such that II3B (X ) a and
P

(16) There is an e e aB X and R > p such that if

T ( V) 0 (relO Cr C R), I (0.

Then I possesses a critical value c > a which can be
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characterized as

c - inf max I(h(u)) (4.2)
her ueQ

where

r- (h e c(Q,z)Ih(u) - u if u e aQ).

Remark 4.3: (16) is satisfied if 1lV 4 0 and there is an

e 3B n X and R> p such that 1(u) • 0 if u e span{Ve) and

ul >R. If I(0) -0 I(e), V -(0), and X - E, we are back

in the setting of Theorem 2.1.

Proof of Theorem 4.1: Suppose c ) a, where c is defined by

(4.2). Then a familiar argument completes the proof: If c is not

a critical value of I, by the Deformation Theorem with 1 - _9
2'

there exists e and n as usual. Choose h e r such that

max I(hu)) ' a + e (4.4)
ueg

and consider I(1,h). Clearly (1,h) e C(Q,Z) and by our choice of

a,ri(1,h(u)) -u on SQ. Thus q(1,h) e r but by (4.4),

max I(n(1,h(u))) 4 c - t , (4.5)
ueQ

contrary to (4.2).

Thus the only novelty in the proof is to show a > a. It

suffices to prove

h(Q) As5 X * (4.6)

for each h e r for then if h e r and w e Q such that

h(w) e 33 n X,

max I(h(u)) (w) ) inf I (4.7)

Since h is arbitrary, (4.7) and (IS) imply c ) a.

To verify (4.6), let P denote the projector of X onto V

given by our splitting of X. Then (4.6) is equivalent to

Ph(u) - 0# 1(id - P)h(u)3 - p (4.8)
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for some u e Q, u depending on h. If u e Q, u - v + re where

v e BR A V and 0 r 4 R. Define

(rv) -2 (Mid - P)h(v + re)I,Ph(v + re))

Thus 0 is continuous on R x V (which we can identify with
kR X R for some k). Note that on 3Q, h - id so for u e aQ,

V(r,v) - ((id - P)(v + re)IP(v + re)) - (r,v) ,

i.e. 4 Id on 3Q. In particular f(r,v) * (p,0) on aQ and

d(f,int Q,(p,O)) is defined where int Q denotes the interior of

Q. Furthermore

d(,int Q,(p,0)) - d(id,int Q,(p,O)) - I (4.9)

by Corollary 3.10 and 10 of (3.6). But (4.9) implies (4.8) has a

solution in Q via 20 of (3.6). The proof is complete.

Remark 4.10: An interesting open question in the settings of

Theorems 2.1, 3.1, or 4.1 is the following. Suppose I'(u) =

u - T(u) where T is compact. Let w be a critical point of I

with critical value c where c is given by (2.2), (3.2) or

(4.2). If further w is an-isolated zero of I', d(l',Br(w),O) is

defined for small r and is independent of r by 50 of Theorem

3.11. One can therefore ask: What is this degree? Such information

would assist in obtaining further zeroes of I'.

Next we will give a PDE application of Theorem 4.1. Consider

-Au )lu + p(x,u), x e a (4.11)

u- 0 . x e 3

where A is as in (1.9) and p satisfies (pl)-(p4 ) of Theorem 2.18

as well as

(p6) &p(x,&) ) 0

for all & e R.

Theorem 4.12 (241: If p satisfies (p1 )-(p4 ) and (p6), then for

each X e R, (4.11) possesses a nontrivial weak solution.

Proof: Let ( ) denote the eigenvalues of

-Av - vv, x e n (4.13)

v 0 , x e 3a
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We order the X by increasing magnitude, each eigenvalue being

listed a number of times equal to its multiplicity. As is well

known, this multiplicity is finite and 0 < 1 < A 4 *so 4 'k

as k + -. Let (vk) be a corresponding orthonormal sequence of

eigenfunctions of (4.13).

If X < X,, the proof of Theorem 2.18 carries over unchanged to

the present case and (p6 ) is not needed provided that we take as

equivalent norm in 2

(f (IVu 2 - Au2 )dx)
1/ 2

a

Thus the interesting case is I a 1I" Suppose A e 'k"+) for

some k > 1. Set V - span(v 1, ....vk) and X - V , the orthogonal

complement of V. Using e.g. an eigenfunction expansion, it is easy

to see that for u e x,

f (IVul 2 - lu 2 )dx ). 2IuI2  (4.14)
a

-1
where k 1- '1k+1" Let

I(u) _ I . (1Vu1 2 - Xu2) dx - J(u)

where J is as in Theorem 2.18. Then as earlier J(u) - o(Iul 2 ) as

u P 0 which with (4.14) yields Us5). Next note that for u a V,

f (IVul 2 - Xu2)dx 0

so by (p6 I 1(u) ( 0 for u e V. Moreover for u e I-

span{V,V k+), by (p4 ) and (2.20).

I(u) C f [_I (IVul 2 - Xu2 ) - a3 lul" + a4 ]dx (4.15)

Since E is finite dimensional, the 0 term in (4.15) dominates for

large u and therefore there exists R > p such that I(u) C 0 in

E\Bi. Thus (16) is satisfied with e - Vk+I via Remark 4.3.
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Once (PS) has been established, Theorem 4.12 follows from Theorem

4.1. To verify (PS), a slight variation of the argument of Theorem

2.18 is required. Suppose II(um)1 t M and 1'(u ) + 0. Let

0 e (-, -). Then for all large m and u - um we have

M + Olul )(u) - BI'(u)u- (4.16)

f [(_I - )Vut 2 _ X )u2 - P(x,u) + Op(xu)u]dx

SC- )3,u, 2  ) - f u2dx + (Op, ')a 3 f JulPdx -a,a

via (p4) and (2.20). Since by the H8ider and Young inequalities

lul 2 4 61ul 4 K(e) + clul p  (4.17)
L LL

for all e > 0 where K(ee + - as e + 0, by choosing C

sufficiently small, the lulL2 term in (4.16) can be absorbed by the

Jul term modulo increasing a5 . It then follows that (u) isL
bounded in B and (PS) is a consequence of Proposition 1.13. The

proof is complete.

Remark 4.18: By following the arguments of Corollary 2.30 it is not

difficult to show that if p also satisfies (p), (4.11) has a

positive and a negative solution for A e (--,A.). However if

X > X1, this is no longer the case. Indeed suppose u > 0 in a
is a solution of (4.11). As is well known, vI has one sign in a
which we can take to be positive. Then by (4.11) and (4.13),

f (-Au)v dx - f u(-Av,)dx - X, f uvjdx (4.19)

- f (Au + p(x,u))v dx

or

- A) f uv1dx = f p(x,u)vIdx (4.20)
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Since the right hand side of (4.20) is nonnegative via (p6 ) while the

left hand side is negative, this situation is not possible.

§5 SYMMETRIES AND MULTIPLE CRITICAL POINTS

When a functional is invariant under a group of symmetries, many

situations are known in which it possesses multiple critical points.

To minimize technicalities we will treat the simplest such case when

the group is Z2 . In particular we will study an even functional,

i.e. 1(u) - I-u). (I possesses a Z2 symmetry since it is

invariant under the maps (id,-id}). The first multiple critical,

point theorem we know of is a classical result due to Ljusternik (25].

Theorem 5.1: Let I e CI(Rn,R) with I even. Then II

possesses at least n distinct pairs of critical points.

Note that critical points of IIs n-1 occur in pairs since I is

even. To prove Theorem 5.1 and treat other even functions, we need a

tool by means of which we can classify and work with symmetric sets.

With E a real Banach space, let E denote the family of subsetv

A C E\(0) such that A is closed in E and A is symmetric with

respect to 0, i.e. x e A implies -x e A. An index theory on E
is a mapping i : E + 9 U {) with the following properties:

10 (Normalization): For x e E\{O}, i(fx,-x)) - I

20 (Mapping property): If A,B e E and there is a map

# e C(A,B) with # odd, then i(A) ( i(B)

30 (Subadditivitv): If A,B e E, i(A U B) < i(A) + i(B) (5.2)
4* (Continuity property): If A a E is compact,

i(A) < - and there exists a uniform neighborhood of

A, N6(A) = {x e Elix-Ai < 8) such that i(A) - i(N 8 (A)).

For future reference, note the following two easy consequences

of 10-40:

5e (Monotonicity): If A,B e E and A C B, i(A) < i(B)

60 If A,B a E, i(A\) )- i(A) - i(B)
To prove 50, just take - id in 20 and for 60 note that

A C B V A\B and invoke 50 and 30.

Several examples of index theories can be found in the

literature, mainly for Z2 and S1 symmetries. See e.g. (26]-
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(28]. The simplest one and easiest to work with is that provided by

the notion of genus [6], (29]. For A e E, A * #, we say A has

genus n, denoted by y(A) - n, if there is an odd map

* e C(A,Rn\O)) and n is the smallest integer with this

property. If there is no finite such n we set Y(A) - -. By

definition, y(#) - 0.

Some simple examples are in order. Suppose A = V U (-V) e E
where V n (-V) = #. Then y(A) - I since we can set #(x) - I

for x e V and #(x) = -I for x e -v making # odd and in

C(A,R\{O)). In particular any finite set of points A can be so

decomposed so y(A) = 1. Thus if Y(A) > 2, A contains infinitely

many points. As another example, suppose A e E is a connected

set. Then y(A) > 2 for otherwise y(A) = I implying there exists

e C(A,R\{O}) with # odd. But #(x) > 0 for some x e A and

#(-x) < 0. Since +(A) is connected, this shows 0 e #(A), a

contradiction.

We will show that y satisfies 10-40 of (5.2). Indeed 1* is

clear. To prove 20, suppose y(B) - n < - or the result is

trivial. Hence there is an f e C(B,Rn\(0}) and odd. The function

f * # e C(A,Rn\{0}) and is odd, so y(A) 4 n - y(B). For 30, let

y(A) - m, y(B) - n, again both finite. Then there is a

e C(A,1P\{o),' * e C(B,Rn\(OJ), with # and 4 odd. Using e.g.

the Tietze Extension Theorem, continuously extend *, * to

* e C(E,R), ; e C(E,Rn). By taking odd parts if necessary, we can
assume #, ; are odd. Letting f - .*,4,, f e C(A U B,R and

is odd. Hence y(A u B) 4 m + n - Y(A) + y(B) and 30 holds. Lastly

if A is compact, there are finitely many sets
k

Aj M Br (x) u Br (-x) with r < Ix I such that A C U A . By an

above example, Y(A ) - I so by 30, y(A) < -. If y(A) - m, there

is a # e C(A,Rm\(0}) with # odd. As in the proof of 30, * has

an odd extension e C(E,R ). Since + * 0 on A, ; * 0 on

N 6(A) for some 5 > 0. Hence y(Na(A)) 4 M. But by SO of (5.2),

y(N 6 (A)) > y(A) and hence y(N(A)) - a - y(A).
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The index theory provided by Y is sufficient for our later

purposes and therefore we will not discuss any others here. To prove

Theorem 5.1 some additional preliminaries are needed.

Proposition 5.3: If V is a bounded, open neighborhood of 0 in

Rk which is symmetric with respect to the origin and * e c aV,Rl)
with 4 odd and j < k, then there exists t e av such that

W - 0.

Proof: The proof can be found in (9].
kProposition 5.4: Let V C R be a bounded, open, symmetric

neighborhood of 0 and A e E with A homeomorphic to av by an

odd map h. Then y(A) - k.

Proof: Since h e C(A,3P) with h odd, y(A) 4 k. If

y(A) - j < k, there is a map f e C(A,Rj\{0}) with + odd. But

then BE # 0 h" 1 C(3P,Rj\(O}) with # odd, contrary to

Proposition 5.3.

An immediate consequence of Proposition 5.4 is

Corollary 5.5: If A e E is homeomorphic to Sn- 1 by an odd

homeomorphism, y(A) - n.

As a final preliminary we need a version of Theorem 1.1 for

SIM  - see Remark 1.4 i) - which we shall simply state. Note

that if I - Isn_ , ,| I'(x) - I'(x) - (I'(x)x)x. For c,s e R,
n-I

let K '(x e s l(x) -c and I'(x)-0} and

A (x e sn ' 11(x) 4 8).

Proposition 5.6: If I e CI (0,R), for any c e R and

neighborhood 0 of Z , there is an e > 0 andxn-i n-il
n e C([0,i xS ,S ) suchthat

1- n(O,) - id

20 Ml1z CAC \0) CZ C
30 If Kc  *, (I,AC+ ) C A C c

40 If I is even, T(l,e) is odd.

Now we can carry out the

Proof of Theorem 5.1: Let yk m (AC S' i1(A) ) k), 1 4 k i n.

Corollary 5.5 shows y# * 1 4 k 4 n. Define

ck in max 1(u), 1 4 k 4 n (5.7)
Aeyk ueA
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Note that c 1 C ... 4 Cn since Y1 D .. .• We will prove that

ck is a critical value of I, 1 4 k < n. This in itself is not

sufficient to prove Theorem 5.1 since ck may be a "degenerate'

critical value, i.e. ck - ... - ck+j_ I for some j > I with

possibly fewer than j distinct pairsof critical points corresponding

to c (and hence fewer than n pairs for I). To surmount this

potential difficulty, it suffices to establish the following

"multiplicity lemma.

Lemma 5.8: Suppose ck ... - ck+j_1i c. Then C(K ) j.

Thus if j > 1, by earlier remarks, K contains infinitely

many distinct points. Thus Theorem 5.1 is an inediate consequence of

Lemma 5.8.

Proof of Lemma 5.S Suppose y(K ) < J. Then by Proposition 5.2,

there is a 8 > 0 such that Y(N8(K )) < o. We invoke Proposition

5.6 to get 9 and n as in that result. Choose A e Y+j-l such

that

max i 4 c + £ (5.9)

A

Let B A\N 6 (Kc). By 6. of Proposition 5.2, y(B) > k - Iso

B e yk as is n(I,B) via 20 of Proposition 5.2. But then by 20 of

Proposition 5.6,

max <c -Ck (5.10)
T1(i.B)

contrary to (5.7).

Remark 5.11: Since {x,-x) e for any x e sn-i, it follows that

Is n-1c, min . Moreover c - max I since S is the only set inn-n

y In fact if A e y and A * S , there is an x e sn- \A. We

can then project A to H\(0) where H is the normal hyperplane

to x through 0 and then project the resulting set radially into

H n S n 1. Since these projections are odd continuous maps, by 20 of

Proposition 5.2 and Corollary 5.5, y(A) < y(H S Sn1) - n - 1.

Consequently no such A exists and , - {

Remark 5.12: Another way to characterize critical values of I is as

b j ft suR min I(x), 1 4 j 4 n •(5.13)
AeyJ xeA
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It is easy to see that b I - c n and c1 - bn.  However it is an open

question as to whether bj " cn-j+1 for J 1,n. If genus is

replaced by the cohomological index of [263, it can be shown that the

above intermediate critical values are equal.

There have been many infinite dimensional generalizations of

Theorem 5.1, see e.g. [2), [10]. We will give one next.

Theorem 5.14s Let Z be an infinite dimensional Hilbert space and

I e CI (,R) be even. If i - O B satisfies (PS) and is bounded

from below, then I possesses infinitely many distinct pairs of

critical points.

Proof: The proof of Theorem 5.14 is formally the same as that of

Theorem 5.1 using the infinite dimensional analogue of Proposition 5.6

and the fact that j in Lemma 5.8 must be finite via (PS). We omit

the details.

The requirement that I satisfies (PS) in Theorem 5.14 is too

restrictive for applications. Consider e.g. the following problem

-au x )p(xu), x e (5.15)

u-0 , xe Q

where p is odd, satisfies (pl), (p2 ),

(p7 ) p(xC) is odd in 9

and

(P;) cp(xC) > 0 if C*0.
For u e E - W1 ' 2((), let

0

I(u) -f P(x,u)dx (5.16)

Then I e C I(E,R), is even, and is weakly continuous via Proposition

1.10. If i7 ' .B I  at a critical point u of I we have

-f p(x,u)dx (f p(xu)udx) f Vu-Vdx- 0

for all # e Z. Therefore u is a weak solution of (5.15) with

- (f p(x,u)udx)"I provided that the X term is finite and this will
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be the case via (pa) since u e 9B The weak continuity of I
%I

implies I is bounded from below (and above). Unfortunately I does

not satisfy (PS). In fact let (um ) be any sequence in OBI such

that um - 0. Then (u m ) is certainly bounded. Moreover

I'(u m ) = (u m ) - ('(uM)um)u m + I'() - 0

via (p7 ) and Proposition 1.10. Since we can choose (um) so that

u 4 0, (PS) is not satisfied.

All is not lost, however for recall Remark 1.4 (iii). One does

not need (PS) globally but only a local version thereof. Our above

remarks show the local version fails for this example when c - 0.

Now suppose c * 0 and u m ) C 3BI is a sequence such that

(u m ) + c and I'(u) . 0. Since (um ) is bounded, um -- u.

Therefore I(U m ) + 1(u) c and I'(um)um  I' (u)u via Proposition

1.10. Since c * 0, (p;) implies u * 0. Consequently the sequence

of numbers

I'C(u)U 3 - -f p(x,u3 )u dx

is bounded away from 0 and

)-1
u (I'u) ) - I'(u ))um  . m ( um m

converges strongly. Thus "(PS)loc" is satisfied. Since we define

ck - inf sup I(u), k e N
AeTh ueA

(5.16) and Cpa) imply ck < 0 for each k e N. Consequently our

above remarks yield

Theorem 5.17: If p satisfies (p1 ), Cp2), Cpa), and (p7 ), (5.15)

possesses a sequence of distinct pairs of weak solutions, (Ok)-

on R x 3B,, where 'k I'(uk)uk.

Remark 5.18: Of course the same argument works for 3B for allr
r > 0. It is also a good exercise to show that ck + 0 as k * *.
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Theorems 5.1 and 5.14 yield multiple critical points of

constrained symmetric functionals. The next result treats an

unconstrained situation.

Theorem 5.19 (Clark. (11])= Let I e C (ER) be even and satisfy

(PS). If 1(0) - 0,

(17) I is bounded from below,

and

(I 8 ) There is a K e E such that y(K) - k and sup I < 0,
K

then I possesses at least k distinct pairs of critical points with

corresponding negative critical values.

Proof: Set y (A C EIy(A) ) J) and define

c - nf sup l(u) 1 - j - k (5.20)
j Aeyi ueh

Since c Tie c ... , ck an by (17), c, > --' In fact

Proposition 1.8 implies c W inf 1. Hypothesis (I8 ) shows ck < 0.
1

That the numbers ci are critical values of I and there are at

least k distinct pairs of corresponding critical points then follows

essentially as in the proof of Theorem 5.1 with Theorem 1 .1 replacing

Proposition 5.6. One must also use the fact that I(0) - 0. Hence in

the analogue of Lemma 5.8 for the current setting, since c < 0,

0 f Kc and Kc e E. The remaining details are the same as earlier so

we omit them.

Remark 5.21. Actually Clark proved a more general result in [11l.

We will give two applications of Theorem 5.19. Consider first

-Au - +(u + p(u)), x e a (5.21)

u-0 , xe Q

Let (X) denote the eigenvalues of the corresponding linear

problem (4.13) as earlier.

Theorem 5.23 1291, (3011 Suppose p satisfies (p;), (p3 ), (p7 ) and

& + p(E) satisfies (p5 ). If X > , then (5.22) possesses at
least k distinct pairs of nontrivial solutions.
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Proof: Define p(s) " F + p(V) for e • [-r,r] and p(E) - 0

otherwise. Then p satisfies (p;), (p5 ), (p), and (p2 ) with

a - 0. With p so defined, any solution of (2.37) will satisfy

(5.22). Thus it suffices to find solutions of (2.37) or critical

points of I as defined in (2.38). By (p), X is even in u and

by the proof of Theorem 2.36, I e C (E,R), satisfies (PS), (I),

and Ix(0) - 0. Thus once we verify (I8), Theorem 5.23 follows from

Theorem 5.19 and Proposition 1.13. Let

k 22
K B I I 2} (5.24)j1 aji aJ j

where vj is as in (4.13) and 0 is free for now. It is clear

that K is homeomorphic to Sk- 1 by an odd homeomorphism. Therefore

y(K) - k by Corollary 5.5. For 6 sufficiently small,

P(u) _ 1 2 + P(u) for u e K. Consequently,
2

1 (u) f [I Vu, 2 
-( 2 +P(u))]dx

j=1 - - °( 2 ) < 0

for u e K via (p3 ) and our choice of X. Thus I satisfies (I8 )

and the proof is complete.

For our final application in this section, we prove a version of

Theorem 1.36 for odd p.

Theorem 5.25 (18): Suppose p satisfies (p7 ) and the hypotheses of

Theorem 2.36. Then for each k e N, there exists a ' such that

for each A > Ik' (2.35) has at least k distinct pairs of

solutions.

Proofs AS in the proof of Theorem 2.36 it suffices to prove the

result for the modified equation (2.37) and therefore to find critical

points of IX(u) as defined in (2.38). Moreover IX(u) is even in

u and satisfies the hypotheses of Theorem 5.19 except possibly

(I8). Define K by (5.24) where 6 is so small that u e K implies

i(v(x)) - P(u(x)) > 0 if u(x) * 0. It follows that
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inf f P(u)dx i ) 0

Thus if A> k 2 1

K A 2 -,k
< 0

K

and (IS ) is satisfied. Theorem 5.19 and our above remarks then give

us at least k distinct pairs of nontrivial solutions of (2.35) which

correspond to negative critical values of I

Remark 5.26: By using some of the ideas in the proof of Theorem 6.1,

it follows that I also has at least k distinct pairs of critical

points at which IA is positive. Thus for A > , (2.35) has at

least 2k distinct pairs of solutions. Theorem 2.36 with p odd is

just a special case of this result with k - 1. See e.g. [18) for

more details.

16. A SYMMETRIC VERSION OF THE MOUNTAIN PASS THEOREM

In this section we will prove a Z2 version of the Mountain Pass

Theorem.

Theorem 6.1 [18], [4]: Let E be an infinite dimensional Banach

space and I e c (E,R) be even and satisfy 1(0) - 0 and (PS).

Suppose further E - V O X, with V finite dimensional and I

satisfies (Is) and

(I9 ) For all finite dimensional i C Z, there is an R - R(E)

such that I(u) 4 0 for u e E\BR()o
Then I possesses an unbounded sequence of critical values.

Remark 6.2: The simplest example of (I.) is provided by (1 1) with the

trivial splitting V - {0) and X - Z.

Proof of Theorem 6.1: We will define a family of sets r and obtain

critical values of I by minimaxing I over these sets. Suppose

V is I dimensional with a basis eI,... ,et Choose

em+, # span(e1,...,e) = for m ) A. Set R 3 R(E.) and

D B i E Define
Is R3
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Gm - (h e C(DmE)th is odd and h - id on 33R  ) E a} (6.3)
m

Note that G * 0 id e G. Now set

F - {h(D m\Y)lm j, h e Gm, Y e E, y(Y) 4 m - j (6.4)

Proposition 6.5: The sets rj possess the following properties

1" r* 0
2* (Monotonicity) r c r

J+1 1
30 (Invariance) If * e C(E,E) is odd and * - id on

aBR r)E for all m e v, then r : r
3

40 (Excision) If B e r, z e E, and i(z) ( s < J,

then B\Z r J-

Proof: Since G * 0, 10 is trivial. If B h(D \Y) e rj+ I, then

m 0 j + 1 > j and i(y) 4 m - (j + 1) < m - J. Hence B e r and

20 is satisfied. If * is as in 30 and B = h(D\Y) e r, then
* h e G . Therefore * 0 h(D \Y) e r and we have 30. Lastly if

m a j
B - h(Dm\Y) e F and z e E with i(z) -sC < J, then

3 11
B\Z - h(D \(Y U h' (Z))) (6.6)

Assuming (6.6) for the moment, we have h-1 (Z) e E since h is odd

and therefore Y U h-1 (Z) e E. Moreover by 30 and 2* of (5.2),

i(Y U h-1(Z)) (i(Y) + i(h- (Z)) - i(Y) + i(Z) m - (j - s)

so B\z e r J_* To prove (6.6), observe that if b e B\Z, then

b - h(x), x e \Y\h I(Z) C D \Y U h -1(Z), i.e.
3 3

B\ZC h(D m\(Y U h I(Z))) (6.7)
-1

On the other hand if b e h(D \Y U h (Z)), then

b e h(D \Y)\Z C B\Z C B\Z, i.e.

h(D,\(Y U h -(Z))) C a\z (6.8)

Comparing (6.7) and (6.8) yields (6.6) and the Proposition.
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Next define

c inf max 1(u), j e z (6.9)
Ber ueB

By 20 of Proposition 6.5,

c I c1 j+1  (6.10)

Proposition 6.11: For j > 1, cj > a.

Proof: Let B - h(D \Y) e where m > J, y(Y) C m - j. By the

definition of R , 1(u) 4 0 if u e z \BR  while I ) a on
a

33rB X. since m >t X)D 0 and therefore p < R Let
a U

0 - (x e D3Ih(x) e BP) and let 0 denote the component of 0

containing 0. Since h is odd and h - id on 3BR nZ a, 0 is a
m

symmetric bounded open neighborhod of 0 in Em. With the obvious

identification between E. and R1 , y(30) - m by Proposition 5.4.

If x e 30, h(x) e B P so if * - (x e DaJh(x) e aBP),
i(e) ) y(30) - m by 59 of (5.2). Therefore y(e\Y) # j > Z and

y(h(e\Y)) > I via 60 and 20 of (5.2). Consider h(e\Y) ) X. If

this set were empty, the projector P of E onto V lies in

C(h(Q\Y),V\{0)) and is odd. But then y(h(e\Y) C 1 = dim V

contrary to our above calculation. Consequently h(-\Y) 0 X * * and

by our definition of 0, this intersection lies on 3B P Thus for

each D e r, there is a w e B such that h(w) e 3B P X and by
(is),

max I > a
B

from which c ) a follows.

Now we can prove that c is a critical value of I for

j > 1. This and more follows from

Proposition 6.12: If J > I and cj - ... - 2. c, then

Y(K ) > q.

Proof: Since c > a by Proposition 6.11 and 1(0) - 0, 0 4 K0  so

Kc e E. Moreover XK is compact by (PS). If Y(K c) < q, by 40 of

(5.2), there is a 6 > 0 such that y(N 6 (K)) - Y(K c ) < q. We invoke
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the Deformation Theorem with 0 - N (KC ) and £ - obtaining

e e(0,e) and n e c([0,1] x E,E) such that

n(1,Ac E\O) c AC_ (6.13)

Choose B e rJ+q_1 such that

max I(u) 4 c + e (6.14)
ueB

Since B e rj +ql, B\ e rj by 40 of Proposition 6.5. The mapping
n(l,e) is odd so by our choice of Z, n(1,-) e G for all m e x.m

Hence n(1,B\) e r by 30 of Proposition 6.5. Thus by (6.13)--

(6.14),

max__ I(u) 4 c - E (6.15)
uen(1,B\O)

contrary to (6.9) and the Proposition is proved.
To show c + M as j + m thereby completing the proof of

Theorem 6.1, an indirect argument related to that of Proposition 6.12
will be employed. By (6.10), (cj) is a monotone nondecreasing

sequence. If (cj) were bounded, there is a c such that c +
as j + -. If C = c for all large J, y(K-) - * via Proposition

6.12. But y(K-) < - by (PS) and 40 of (5.2). Consequently cj <

for all j e N. Set
K - (u e ic t+1 4 I(u) 4 ;, I'(u) - 0)

By Proposition 6.11, K e E and by (PS) and 40 of (5.2) again, there
is a 8 > 0 such that Y(K) y y(N8(K)) ---q < -. We invoke the
Deformation Theorem with 1 - c - c,+1  and 0 - N6 (K) to get e and

n satisfying (6.13) with c replaced by c. Choose j > A such
that

c > c- (6.16)

and B e r J+q such that

max c + C. (6.17)
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Arguing as in Proposition 6.12, it follows from our choice of 1 that

n(l,,) e G for all m e K and that n(1,B\O) e r j But then

(6.17), (6.13) and (6.15) (with c - ;) are contrary to (6.16) and

(6.9). The proof of Theorem 6.1 is complete.

Remark 6.18: i) Note that the proof of Proposition 6.12 works

whenever the sets r * #. In particular the argument can be used to

obtain the stronger form of Theorem 5.25 mentioned in Remark 5.26.

(ii) The condition that 1(0) - 0 can be weakened to 1(0) < a

but if this is violated the result may no longer be true. A simple
2

counterexample is 1(u) - I - |uE

We conclude this section with a PDZ application of Theorem 6.1 to

(1.9).

Theorem 6.19 (4]: Suppose p satisfies (pl), (p2 ), (p4 ) and (p7).

Then (1.9) has an unbounded sequence of weak solutions.

Proofs As we know from the proof of Theorem 2.18, (p)I (p2 )1 (p4 )

imply I as defined in (1.11) belongs to C1(ER) and satisfies (PS)

and 1(0) - 0. By (p), I is even. Moreover (p4 ) implies (2.20)

which in turn gives (19). If (I) holds, Theorem 6.1 implies I has

an unbounded sequence of critical values (ck). If uk is a critical

point corresponding to ck,

-k I(uk) -j Uk12 f P(x ~x (6.20)

If (N) were bounded in Z, (p2 )1 the Sobolev Embedding Theorem,

and (6.20) show ck would also be bounded. Thus (uk) must be

unbounded in Z.

To verify (15), let (X), (vk) be as in (4.13). The

eigenfunctions (vk) form a basis for Z. Let V - span{v1 ,...,pv

and X - V where A is free for the moment. By (p 2 )
1 lul+1

1(u) ) 1 |U2 f (a s- + a)dx (6.21)2 ~a6

By the Gagliardo-Nirenberg inequality (31), for all u e 3,

luL 1 blulalulLa1-& (6.22)
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where b is independent of u and

(-= - + (1 - a) 1 (6.23)as+1 2 n 2

Moreover if u e X, eigenfunction expansions show

Xt+1 lUl2 2 lu12 (6.24)
L

Substituting (6.22)-(6.24) into (6.21) yields

-(1-a)(s+l)

(u) > - b- 1 a2 (6.25)
2 +1 7

for all u e 3B nr X. Choose p so that the quantity in thep
parentheses in (6.25) equals 1/4. Thus determines P P p, as a

function of 1. Since A + O as t + m, choose I so large that

p2 > 8a7  Then

1(u) P 1 2

on 3B fr X and (I5 ) holds. The proof is complete.

Remark 6.26: (i) Note that unlike Theorem 2.18, (p7) allows us to

eliminate all growth hypotheses on p near 0. (ii) A slight

variation on (6.20) shows (uk) is bounded in LO.

17. PERTURBATIONS FROM SYMMETRY

In the previous two sections the existence of multiple critical

points of even functionals has been studied. In this final section

the effect of perturbing such a functional by an additional term that

destroys the symmetry will be considered. We will work in the context

of the example just treated in 16. Thus consider

-Au = p(x,u) + f(x), x e Q (7.1)

u 0 , x e 3

and the corresponding functional

I
1(u) "1 lul2 

- f (P(x,u) + f(x)u)dx (7.2)
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Theorem 7.3 (32]-[351 If f e L2 and p satisfies (pl), (p4 ),

(p7 ), and (p2 ) with s such that

__ < (n + 2) - *(n -2) (7.4)
- I n(s - 1)

then (7.1) possesses an unbounded sequence of weak solutions.

Results related to Theorem 7.3 have been obtained by Bahri and

Berestycki (32], Struwe [33], Dong and Li [34], and the author (35).

The development we follow is that of [35]. Some of the more technical

aspects of the proof will only be sketched referring to [35] for the

details. Whether the restriction on s given by (7.4) is essential

is not known. Bahri [36] has proved that if p is a pure power

satisfying (p2 ), the conclusions of Theorem 7.3 hold for almost all

f e L2 .

As in 16 to prove Theorem 7.3, it suffices to prove I has an

unbounded sequence of critical values. The argument we employ

requires an estimate of an appropriate type on the deviation of I

from evenness. In particular we need

Ix~) Z(u 4 Oji i IIZ) I / P + 1) (7.5)

for all u e E. By (7.2) and (p7 )

1(u) - I(-u) - 2 f f(x)udx (7.6)

We do not believe that (7.6) implies (7.5). However it is possible to

replace I by a modified functional * such that 0 satisfies (7.5)

and all large critical values of 0 are critical values of I. To

motivate the modified problem, observe first that by (p4), there are

constants a3,a4,a5 > 0 such that

Ii
S(Cp(x,V) + a3  P(x,V) + %4 ) asl1l" (7.7)

for all c e i.
Lemma 7.8: If u is a critical point of I, there is a constant

a6 such that
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f (P(x,u(x)) + a4)dx - a6(12(u) + 1)1/2 (7.9)

where a6  depends only on If 2

Proof: By (p4), at a critical point of I,

1
I(u) - I(u) - I V'(u)u

- f (up(x,u) +a )dx - i " I - a
23 2 L2 L2 7

(-12) f (up(x~u) + a)dx - EluIll - K(C) IfI1 - a
2 LV L2  7

-1 -1
via the H8lder and Young inequalities where G + M - 1, C > 0

is arbitrary, and K(C) + - as £ + 0. Choosing e - 1 (Y- I)a5.

(7.10) yields (7.9).

Remark 7.11: Note that Lemma 7.8 and (7.9) give us a bound for

critical points u of I in terms of the corresponding critical

value I(u).

Now let X e C1(R,R) such that X(t) I for t 4 1,

X(t) - 0 for t ) 2 and -2 < X' < 0 for t e (1,2). For

u e E, define C(u) - 2a6 (I
2 (u) + 1)1/2 and

(u) B x(C(u) 1 f (P(x,u) + a 4)dx) . (7.12)

Finally set

1 2
4(u) lul2 - f (P(x,u) + *(u)f(x)u)dx (7.13)

2 a2

If u is a critical point of I, by (7.9), *(u) - I and

(u) - 1(u), 0'(u) - 1'(u) - 0. Conversely we have

Proposition 7.14, Under the hypotheses of Theorem 7.3, * e C (E,R)

and there is a constant M > 0 such that

10 4 satisfies (PS) on V 3 (u e 210(u) > N)

20 If u is a critical point of 4 in W, then 4(u) - 1(u)

and 4'(u) - I'(u) - 0

30 4 satisfies (7.5) for all u e g.
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Proof: We refer to 135) for the details of 10-20. To prove 30, by

(7.13),

O(u) - 0(-u) - -(*(u) + *(-u)) f fu dx
a

If u is not in the support of *, 1(u) f fu dx - 0 while if u is

in the support of #, a

f (P(x,u) + a4 )dx ( 2 (u) (7.15)

a

due to the definition of X and form of *. Therefore

V(u) f fu dx C (4a6 ) aa 5 / *(u)If 2 (I(u)2 + 1)1/21A (7.16)

< #(u)a 9(IZu)l/) + 1)

by (7.7) and (7.15). Since by (7.2) and (7.13),

II(u)l C I#(u)I + 21 f fu dxl , (7.17)

combining (7.16) and (7.17) yields

*(u) f fu dx C *(u)a 1 0 (I9(u)l /I + I f fu dxl 1/ V + 1) . (7.18)

a a

An application of Young's inequality and similar estimates for the

*(-u) term then give (7.5).

Now we turn to the question of finding critical points for 0.

Let (A ), (v ) be as in (4.13), E ! span(v,...,v 1, and 3 1
m a I am m

the orthogonal complement of Em . By (2.20), there is an RL such

that O(u) 0 for u e \sR. set D = R nM and
a m

( " {h e c(D mZ)h - id on 3D a (7.19)

We define a sequence of minimax values of #t

bn 2 inf max *(h(u)), m e N (7.20)her, #w,

If f - 0, the arguments of 16 show bm is a critical value of I,
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but with the f term present, these numbers are not in general

critical values of I. We can however get a lower bound for b.o

Proposition 7.21: There is a constant a > 0 such that for large a,

b )a m (7.22)3

where B 0 (n(s - ))-1 (n + 2 - (n - 2)s)
Proof: Using the fact that X > const.m2/n (37] for large m, a

slight modification of the argument given to verify (I5) in Theorem

6.17 yields (7.22). We omit the details.

Before obtaining critical values of 0, a second set of

comparison values must be introduced. Let

Um -u trv+ 1 + wit e [0,R,+,], w e BRm+l ) , ,un 'C R ,

i.e. U. is the "upper" half of Dm+1 and let

Am - (H e (UE)IBHID er and H(u) - u

for lul R and for u e (BRa+I\BRa) )Er)

Set

c - inf max *(H(u)), m e (7.24)
HeA ueU

a m

With M as defined in Proposition 7.14, we have

Proposition 7.25: If cm > bm > m, a e (o,c - b a), and

A(6) S {H e A i.(l)iD" 4 b + 6

then

c() - inf max *(H(u)) (7.26)
HeA (8) ueu a

is a critical value of 4 with C(8) ) C'.

Proof: By the definition of bm, A m(6) * * and c (6) > a a 1

since A (8) C Am* If c( ) is not a critical value of 4, let

-42-



( Cc - bi n ) and invoke the Deformation Theorem to get 
£,

as usual. Choose H e A (6) such that

max *(H(U)) 4 caM() + (7.27)

ueu 3

Observe that (1IH) e C(Um Z) and by our choice of

-E, ri(1,l(u)) - u for fut - R,+ and for u 0 'amj\9Rm) %1

since * 4 0 on these sets. Moreover on

*(H (u)) C b 6 C c - £ ( c (6) - c, again via our choice of e-

Hence (1.s) - a on DA and therefore MI(,) e A M(6). But by

(7.27) and the properties of r(1,),

max (n(1,o(U))) c5(8) - £ (7.28)

ueum

contrary to (7.26).

Remark 7.29s Note that as 6 + 0, %(8) becomes smaller. in

interesting open question is what 
happens to Cm(8) as 6 + 0.

To complete the proof of Theorem 7.3, 
with the aid of proposition

7.21 and 7.26, it suffices to show 
that cm > bm  for arbitrarily

large values of m. We will prove

Proposition 7.30: Suppose b. - cm  for all large a. Then there is

a constant w > 0 such that

b C w 'l 
(7.31)

for all large a.

Comparing (7.31) to (7.22), we see 
theme inequalities are

incompatible with (7.4). Thus cm - be for all large a is

impossible and our proof of Theorem 
7.3 is complete.

Proof of proposition 7.30s Choose t ) 0 and e Ae such that

max #(E(u)) 4 bm + * (7*32)

3xtend a to Dm1 as 11(u) - H(u) for a e U. and i(u) - -)

for u e -Um. Since R is odd, ; e C(D,, 1.3) and belongs to

S1" -4en3e
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b+ 1 -C max *(H(u)) (7.33)
ueD.-+1

By (iii) of Proposition 7.14 and our definition of H, for each

u e Um,

*(;(-u)) < O(H(u)) + Bl(I9(H(u))I + 1) (7.34)

Hence by (7.32) and (7.34),

max C(H(u)) 'C b + £ + 13((b + e) + 1) , (7.35)

ue-U m 1

and consequently by (7.33),

b b b + e + + ) l / + 1) . (7.36)

Since e > 0 is arbitrary,

ba+I ' bm + (b m + 1) (7.37)

for all large m. Now by a straightforward induction argument, (7.37)

implies (7.31) and the proof is complete.
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